A kernel-based framework to tensorial data analysis
نویسندگان
چکیده
Tensor-based techniques for learning allow one to exploit the structure of carefully chosen representations of data. This is a desirable feature in particular when the number of training patterns is small which is often the case in areas such as biosignal processing and chemometrics. However, the class of tensor-based models is somewhat restricted and might suffer from limited discriminative power. On a different track, kernel methods lead to flexible nonlinear models that have been proven successful in many different contexts. Nonetheless, a naïve application of kernel methods does not exploit structural properties possessed by the given tensorial representations. The goal of this work is to go beyond this limitation by introducing non-parametric tensor-based models. The proposed framework aims at improving the discriminative power of supervised tensor-based models while still exploiting the structural information embodied in the data. We begin by introducing a feature space formed by multilinear functionals. The latter can be considered as the infinite dimensional analogue of tensors. Successively we show how to implicitly map input patterns in such a feature space by means of kernels that exploit the algebraic structure of data tensors. The proposed tensorial kernel links to the MLSVD and features an interesting invariance property; the approach leads to convex optimization and fits into the same primal-dual framework underlying SVM-like algorithms.
منابع مشابه
Fisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملDuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages
With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, ho...
متن کاملیادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملCommon and Discriminative Subspace Kernel-Based Multiblock Tensor Partial Least Squares Regression
In this work, we introduce a new generalized nonlinear tensor regression framework called kernel-based multiblock tensor partial least squares (KMTPLS) for predicting a set of dependent tensor blocks from a set of independent tensor blocks through the extraction of a small number of common and discriminative latent components. By considering both common and discriminative features, KMTPLS effec...
متن کاملTensorial Recurrent Neural Networks for Longitudinal Data Analysis
Traditional Recurrent Neural Networks assume vectorized data as inputs. However many data from modern science and technology come in certain structures such as tensorial time series data. To apply the recurrent neural networks for this type of data, a vectorisation process is necessary, while such a vectorisation leads to the loss of the precise information of the spatial or longitudinal dimens...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2011